The Statistics of Causal Inference: A View from Political Methodology
نویسندگان
چکیده
Many areas of political science focus on causal questions. Evidence from statistical analyses is often used to make the case for causal relationships. While statistical analyses can help establish causal relationships, it can also provide strong evidence of causality where none exists. In this essay, I provide an overview of the statistics of causal inference. Instead of focusing on specific statistical methods, such as matching, I focus more on the assumptions needed to give statistical estimates a causal interpretation. Such assumptions are often referred to as identification assumptions, and these assumptions are critical to any statistical analysis about causal effects. I outline a wide range of identification assumptions and highlight the design-based approach to causal inference. I conclude with an overview of statistical methods that are frequently used for causal inference.
منابع مشابه
The Statistics of Causal Inference: The View from Political Methodology
Many areas of political science focus on causal questions. Evidence from statistical analyses are often used to make the case for causal relationships. While statistical evidence can help establish causal relationships, it can also provide strong evidence of causality where none exists. In this essay, I provide an overview of the statistics of causal inference. Instead of focusing on statistica...
متن کاملThe Neyman-Rubin Model of Causal Inference and Estimation via Matching Methods∗ Forthcoming in The Oxford Handbook of Political Methodology,
Wand for many valuable discussions on these topics. All errors are my responsibility.
متن کاملUnderstanding the Past: Statistical Analysis of Causal Attribution
Would the third-wave democracies have been democratized without prior modernization? What proportion of the past militarized disputes between nondemocracies would have been prevented had those dyads been democratic? Although political scientists often ask these questions of causal attribution, existing quantitative methods fail to address them. This article proposes an alternative statistical m...
متن کاملIntroduction to the Virtual Issue: Past and Future Research Agenda on Causal Inference
If you ask political scientists whether a major goal of their empirical research is to test causal relationships, I suspect that most of them answer “yes.” In contrast, many statisticians would say that their methods may improve predictions but have little to do with causal inference. As a result, even as an increasing number of social scientists use statistical methods to infer causal effects ...
متن کامل"Truth" is Stranger than Prediction, More Questionable than Causal Inference
Robert Luskin's article in this issue provides a useful service by appropriately qualifying several points I made in my 1986 American Journal of Political Science article. Whereas I focused on how to avoid common mistakes in quantitative political science, Luskin clarifies ways to extract some useful information from usually problematic statistics: correlation coefficients, standardized coeffic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015